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Abstract: A reaction-diffusion type mathematical model for 

the growth of corals in a tank has been proposed based on the 

model suggested by Mistr and Bercovici, emphasizing the effect 

of nutrient concentration and domain size on growth patterns. 

The Turing type pattern formation of the proposed model has 

been considered and the pattern formation parameter spaces 

(Turing spaces) of the model were determined. The model is 

solved numerically when the parameters lie in Turing space 

and the results are represented graphically. These numerical 

solutions resemble branching structures of some branching 

corals. It has been observed that the behaviour of the branching 

structures vary with parameter values as well as the considered 

domain size (dimensions of the tank). 

 

Keywords: Pattern formation, reaction-diffusion equations, 

spatial temporal, Turing instability. 

 

INTRODUCTION 

 
Corals are made up of a vast amount of calcium carbonate 

deposited by the colonies of cnidarian polyps. These 

colonies are formed when a planktonic coral larvae, 

called a planulae, settles on a hard surface. The larvae 

transforms itself into a polyp just after settling (Castro 

& Huber, 1997). The maximum diameter of a polyp is 

a species-specific characteristic. Once they reach this 

maximum diameter they divide recurrently and form a 

colony (Merks et al., 2003b). If the coral colony does not 

break off, it grows intensively as its individual polyps 

divide to form new polyps (Castro & Huber, 1997). 

In stony corals the polyps reside in cup like skeletal 

structures called the calices (Merks et al., 2003b). As new 

polyps are formed they build new calices. This causes the 

growth of the solid matrix of stony corals. 

Different aspects of coral morphogenesis have been 

studied using various modelling and computational 

approaches (Kaandorp et al., 1996; 2005; 2008; Merks, 

2003; Merks et al., 2003a;b; Filatov et al., 2010) and some 

fascinating stony coral simulations have been reported 

(Merks, 2003; Merks et al., 2003a; b; Kaandorp et al., 

2005; 2008; Filatov et al., 2010). A reaction-diffusion- 

advection type model for the growth of corals has been 

proposed by Mistr and Bercovici (2003). 

 

The morphogenesis of branching corals have been 

described by the diffusion-limited aggregation (DLA) 

type models and the patterns generated by this method 

for stony corals have been recorded (Merks 2003; Merks 

et al., 2003b; c). 

 

The objective of this paper is to propose a reaction- 

diffusion type mathematical model for the formation 

of coral patterns, emphasizing the effect of nutrient 

concentration and the domain size. It is assumed that all 

the other factors that affect the growth of coral are fixed. 

 

METHODOLOGY 

 
A reaction-diffusion type mathematical model 

 

A water filled tank with some coral larvae (planulae) 

settled on the bottom of the tank was considered. It was 

assumed that the nutrients are supplied to the tank at a 

rate us at the top surface of the tank. It was also assumed 

that the growth factors except the availability of nutrients 
are fixed. 
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The coral polyps consume dissolved nutrients and 

produce additional solid material (corals produce their 

skeleton by extracting dissolved calcium carbonate 

surrounding them). This process can be regarded as a 

reaction process between the dissolved nutrients and 

We now have the following set of governing equations 

for the process: 
∂u  

= Du∇2u — kuv2,  x ∈ Λ c R3,  t > 0, 
∂t , 

∂v = D ∇2v — k v + kuv2, x ∈ Λ c R3, 
,

 

the dissolved calcium carbonate. Let A and B denote ∂t v 
1

 , ...(5) 

the dissolved nutrients and the dissolved solid material 

(calcium carbonate) respectively. This process can be 

expressed as a hypothetical reaction between A and B of 

the form (Mistr & Bercovici, 2003): 

k 

lA + mB —→ nB ...(1) 

where k is a positive rate constant (reaction rate). 

l, m and n are the respective stoichiometric constants such 

that n = m + l. Units of k depend on the stoichiometric 

constants l, m and n. Then by the law of mass action 

(Murray, 2003) we have the rate change of solid material, 

which is proportional to uv
m
. Mistr and Bercovici (2003) 

investigated the stability of the system for various m and 

found that the system is unstable yielding solid growth 

only in cases where m ≥ 2. They have used the lowest 

order unstable case (l = 1, m = 2) and the same case has 

been used in this paper. 

∂w  
= k1v, x ∈ Λ c R3, t > 0. 

,
 

∂t 

 

Simplification to a two-dimensional model and 

nondimensionalization 

 

Assume that the nutrients are supplied at the top surface 

at a fixed rate us. That is u = us at z = H where H is the 

depth of the considered tank. We assume that u and v 

vary from top to bottom of the considered tank as follows 

(Mistr & Bercovici, 2003): 

v(x, y, z, t) = v¯(x, y, t)f (z), ...(6) 

u(x, y, z, t) = us + (u¯(x, y, t) — us)ƒ (z)) and ...(7) 

w(x, y, z, t) = w¯(x, y, t)f (z), ...(8) 

where 
3 z2 

 
Let u ≡ u(x, y, z, t) and v ≡ v(x, y, z, t) be the biomass of 

ƒ(z) = 
2 

l — 
H2 ...(9) 

dissolved nutrient and calcium carbonate ions at the point 
(x, y, z) ∈ 4 at time t(> 0). Here 4 is the considered model 

geometry (geometry of the tank). The time rate of change 

l ∫ H 

Since  ƒ (z)dz = l$ 
O ∫ 

 
u¯ and v¯ aretheaveraged values 

1  H  m 
 

of the nutrient concentration is controlled by diffusion 

and reactive loss of nutrients. We can immediately write 
the rate equation for this process by applying the law of 

of u and v over z. Assume that H  O ƒ  (z)dz l for 
m = 1, 2, 3. Substituting the above values in the governing 
equations (5) and integrating over z we get 

mass action and Fick’s law, as follows: ∂u¯ 2 3(us — u¯) 2 
,

 

∂u 
7 Du∇

2
u — kuv

2
 ∂t 

 
...(2) 

= Du∇hu¯ + Du 
∂t H2 

—kv̄  u ,̄ , 
, 

 

The time rate of change of the solid material is 

controlled by diffusion, loss due to deposition and 

∂v¯ 2 3v¯ 2 

∂t 
= Dv∇hv¯ — Dv 

H2 — klv¯ + kv¯ u¯, , 

, ∂w¯ 

reactive production. Assume that the polyps extract the   = klv¯, 
,

 

dissolved calcium carbonate at the rate k (> 0). That is 
1 the solid materials deposit on the existing solid matrix 

∂t ...(10) 

∂2 ∂2 

(coral particles) at the rate k . Then the rate equation of 
where ∇2h = 

∂x2 
+ 

∂y2 
is the horizontal Laplace operator.

 

this process is: Substitute 
√  

û = us ū, 
√ v̂  = us v̄ , ŵ = us w̄ , 

∂v 
= D ∇2

v — k v + kuv
2 ...(3) x̂ = 

 3 
x, y^ = 

 

  3y. Then the system reduce to: 

∂t 
v 1 H H

 
∂u^ = 

3Duus
∇̂ 2u  ̂+ 

3Du
(u — u u^) — u v^ u^ , 

u s s 
3 2 

Du(> 0) and Dv (> 0) in above equations are the s ∂t 
diffusion rates of dissolved nutrients and the calcium 

H2 h H2 s , 
, 

carbonate ions, respectively. Let C denote the solid 

material deposited by coral polyps and w denote its 

biomass. This process can be symbolized as follows. 

us 
∂v^ 

=
 

∂t 

∂w^ 

3Dvus 

H2 ∇ ĥ
2v̂  — 

3Dvus 3 2 

H2 v^— klusv^+ usv¯ u¯ 

, 
, 

∂w 
- k v ...(4) us 

∂t 
=  klusv^, , 

∂t 1 ...(11) 
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H 

 

 

 

 

where ∇̂ 

 

2 ∂2 ∂2 
 

  

= 
∂x^2 

+ 
∂y^2 

.
 

3Du 

(TC1) ≡ Det(A) > 0, 

(TC2) ≡ Tr(A) < 0, 

(TC3) ≡ d(a11) + (a22) > 0, 

Substituting t^ = 2 t, the system can be reduced to: (TC ) ≡ (TC )2 – 4d (TC ) > 0; 
4 3 1 

∂u^ = ∇̂ 2u  ̂+ l — u^— α2v^2u  ̂, where 

∂t  ̂
h ,

 
, 

∂v^ 
^ 2 2 2

 

 

Fu  Fv A + 
Ju  Jv S 

 

+ 
all  al2 
a2l  a22 S 

∂t̂  

 
∂ŵ  

 
 

∂t̂  

= d ∇ hv  ̂— λv^+ αv  ̂u ,̂ 
, 
, 
, 

= λlv^, , 

 
Dv kH

2
u

2
 k1H

2
 

...(12) 

and s Ξ (uO, vO) is a stable steady state of the 
corresponding spatially homogeneous system. 

 
This section investigates the parameter regions in which 
the Turing instability conditions are satisfied (Turing 

where  d =   , α
2
 = 

Du 3Du 
s , λ = d + 3Du

 
and 

instability region) by the reaction-diffusion system 

λl = 
klH

2 

. For the notational convenience we omit 
3D 

(equation 13) under the no-flux boundary conditions: 

u 

the hats of the above two equations. Then the model 

equation is: 
∂u 

= ∇2
u + l — u — α2v2u, x ∈ Λ c R2, t > 0 , 

∇u.n = 0, x ∈ ∂Λ, 

∇v.n = 0, x ∈ ∂Λ, ...(14) 

, where denotes the gradient operator and n denotes the 
, 

∂v 2 2 2 
, outward unit normal vector to the domain boundary ∂(. 

2 

∂t 
= d∇ v — λv + α v u, x ∈ Λ c R , t > 0 , 

, 
= λ1v, x Λ R

2
, t > 0. , 

∂t ∈ c 

...(13) 

Steady states 

There are three homogeneous steady sates 

S1 Ξ (us1, vs1), S2 Ξ (us2, vs2) and S3 Ξ (us3, vs3) 

Turing instability of the model 
for  the corresponding system of ordinary differential 

√ α — 2 — 4λ2 

equations. Here usl = l, vsl = 0 , us2 = α 
, 

2α 
Some  reaction  diffusion  systems  have  a  special √ √ v  + 
characteristic of having stable steady states in the absence vs2 = α +  α2 — 4λ2 , us3 = α +  α2 — 4λ2  and s3 

of diffusion (in a spatially homogeneous system), and  2αλ 2α 
—√ α — 4λ 

these states become unstable in the presence of diffusion 

(in a spatially inhomogeneous system). Solutions of such 

systems form spatial temporal patterns. By imposing 

α 2 2 

2αλ 
for α > 2λ. 

these conditions for a reaction diffusion system some 

conditions can be derived in terms of model parameters. 

That means the reaction diffusion systems may form 

The Jacobian matrix evaluated at Si is: 

= 
Fu  Fv = 

all  al2 —l — α
2
v

2 2λ 

Ai 
J J a a 

=
 si  — 

2 2 
spatial patterns when satisfying these conditions. In 
1952, the mathematician Alan Turing explained this 

phenomena for reaction diffusion systems in chemistry 

u v S
i
 2l  22 S 

i
 

α vsi λ 

...(15) 

(Turing, 1952) and hence these conditions are called 

Turings instability conditions. In Murray (2003), the 

Turing instability conditions for the general forms 

where F (u, v) = l — u — α2uv2 and J(u, v) = —λv — α2uv2. 

The trace and determinant of Ai are F r(Ai) = λ — l — α2vsi2 

and Det(Ai) = λ(α2v2 si— l), respectively. 
∂u 

= ∇2
u + F (u, v), x ∈ Λ c R2, t > 0 ,   

∂t , RESULTS AND DISCUSSION 
∂v 

= d∇2
v + J(u, v), x ∈ Λ c R2, t > 0 , 

∂t , 

 

have been derived subject to no-flux boundary conditions. 

These conditions take the form: 

 

Turing instability conditions 

 

The Turing instability conditions at the steady state Si 

take the form: 
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1 i i 
2
 

 
  

si 

roots are: 

α2 — 4λ2 +  

√ 
2 2 α2 

— 
2λ3 + α 

 
α2 

— 
4λ2 

(TC ) ≡ Det(A ) > 0, ⇒ λ(α vsi — l) > 0, F C Ξ — 
⇒ λ — (l + α2v2 ) < 0, 3 

2λ2√ 
< 0, 

2 2 

(TC2)i ≡ Tr(Ai) < 0, si 

(TC
3
)

i 
≡ d(a

11
)

i 
+ (a

22
)

i 
> 0, ⇒ λ — d(l + α vsi) > O, 

FC3 2λ — αd(α + α — 4λ ) 
2λ 

√ 

> 0, 

√ 

(TC ) ≡ (TC ) 2 – 4d (TC ) > 0; ⇒ (d(l + α 2vsi2) — λ) 2 FC4 Ξ  2λ
3 — dα(α +  α

2 — 4λ
2) 

2 

— 4d  α
2 — 4λ

2 + α α
2 — 4λ

2  > 0. 

4 i 3 i 1 i 2λ
2 2λ 

— 4dλ(α2 v2 — l) > O. 

...(16) 

Consider the case α > 2λ. It can be shown that the 

trivial steady state S1 is a stable node, S3 is a saddle 

It can be shown that TC1 is held at S2 in the region 

α > 2λ. Therefore only TC2, TC3 and TC4 are checked. 

The bifurcation TC2 = 0 (Hopf bifurcation), gives two 
real roots for when λ > 1. These are 

2 

point and the stability of S  further depends on the (F C )α , = 
 λ 

 
2 

values of the parameters α and λ. It can be shown that 
2  1 2 √  

λ — l 

the above conditions are not satisfied at S1. Since S3 is a 
saddle point, the Turing instability does not occurr at S3. 

Therefore, the Turing type instability may occur only at 

The equation TC3 = 0 gives two real roots for α when 

λ > d. These are 
2 

S2 and this paper considers the Turing type patterns at S2. (FC3)α1,2 = √
  λ 

 

The Turing conditions at S2 are (TCi)2, i = 1, 2, 3, 4. For 

the notational convenience, ignore the index 2 of (TCi)2. 
The Turing instability conditions at S2 can be obtained in 

 

The equation TC4 

d(λ — d) 

 

= 0 gives four real roots for α when 

the following form by substituting vs2 in terms of model 
λ > d. Among these roots two are positive. These positive 

parameters, in the inequalities (equation 16). 
√   α α2 

— 4λ2  
> 0, dλ3(8d2 + 7dλ + 3λ2) 

√ √ 
2 2d λ7(λ — d)(2d + λ) 2 

FC1 Ξ 2λ (FC 4)α 1,2 = 
d(d + λ) 

 

 

Figure 1: Curves to determine Turing space for d = 0.001 

 

 

Figure 1 shows the plots of α = (TC2)α1, α = (TC3)α2 and (2λ + ϵ)2 — 2λ3 + (positive term) 
α = (TC )α  for d = 0.001. F C2  = — 2λ2 

 

4  1,2 

2λ2(2 — λ) + (positive term) 

Since α > 2λ putting α = 2λ + ε (ε > 0) in TC2, we have = — 
2λ2 

< 0; if λ < 2 ..................................................... (17) 

40 TC 4 0 TC 2 1 

TC 3 0 TC 3 0 

TC 3 1 

TC 4 0 TC 4 0 

TC 4 1 

TC 4 2 

TC 2 0 
TC 2 0 
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— 

3 

Turing space 

(TC3)  

 

(TC )  
(TC2)  

 

(a) (b) 

 

 

Therefore TC2 is negative for λ < 2. Also, (TC3)α1 > λl = 
  —8d  

[(TC) ]α for λ≠ 2d and (TC )α = (TC )α for α = 2d. l — 6d + d2 
4  1 3  1 4  1 

Moreover λ2 = 
2 d2 + 22d + l 
(l — d) +  √ √ __________________ l/3 

3 
3 d 3— 75d 2— 33d — l + 6 6d l9d 2— 27d — d 

3 
l 

2 3 l  3 2 √ √ 3  l/3 

FC 3  = — 
d(2λ + ϵ) — 2λ + (positive term) 

2λ2 

+ d — 75d — 33d — l + 6 6d l9d 
2
 27d — d — l . 

2λ
2(2d — λ) + (positive term) λ has an asymptote when d

2
 − 6d + 1 = 0. That is λ has 

= — 
2λ2 1 √ 1 

< 0;  if λ < 2d.......................................................... (18) an asymptote at d = dc1 = 3  2 2. 

Therefore TC3 

The plots of λ1 and λ2 with respect to d are shown in 

Figure 2. When d = 1, λ and λ coincide each other. That 
considering these facts, the instability region (Turing 1 2 

space) can be written as a union of two regions Y1 a and 
Y2 . 

Where, 

Yl : The area covered by the line α = 2λ and the curve 

α = (TC4)α1 for λ ≤ 2. That is 

Yl = {(λ, α); 2d ≤ λ ≤ 2,  2λ < α < (FC4)αl} 

Y2 : The area covered by the curves α = (TC2)α1 and 

α = (TC4)α1 for λ > 2. That is 

Y2 = {(λ, α);  λ > 2,  (F C2)α1 < α < (F C4)α1} 

 
Now we consider the points of intersection of the 

curves α = (TC )α and α = (TC )α . These curves intersect 

is when d = 1, the area covered by the curves α = (TC2)α1 

and α = (TC4)α1 vanishes. That is when d = 1 the Turing 

space vanishes. 
 

Figure 2: λ and λ curves with respect to d 
2  1 4  1 

1 2
 

at two points (say λ = λ1, λ = λ2). Here 

 

 

Figure 3: Sketches of Turing space: (a) d < dc1; (b) d > dc1. In each figure dashed curve is α = (TC2)α1, solid curve is α = (TC4)α1 

and the straight line is α = 2λ. Shaded area is the Turing space. 

— 

is not satisfied in the region λ < 2d. By 
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l00 2 

 

 

 

Figure 4: (λ, α) parameter space (shaded area) for different values of d: (a) d = 0.001; (b) d = 0.1; (c) d 

= 0.01 and (d) d = 0.23. In each figure, upper curve (dashed curve): α = (TC4)α1; middle curve 

(dotted curve): α = (TC2)α1 and lower line (solid line): α = 2λ 

 

 
When d < dc1 the curves α = (TC2)α1 and α = (TC4)α1 

intersect only at one point (λ = λ1 < 2) and these curves 

∂u = ∂
2u + l — u — α2 v2 u, x ∈ Λ, t > 0 , 

∂t ∂x 
∂v ∂2v , 

 
...(19) 

intersect at two points ( λ= λ and λ = λ ) when d > d   = d  — λv + α2v2u, x ∈ Λ, t > 0 , 
1 2 c1 ∂t ∂x2 

in the range of positive λ. This behaviour and the Turing 

spaces corresponding to two points in the ranges 0 < d with the boundary conditions 

< dc1 and dc1 < d < 1 are sketched in Figure 3. The (α, λ) 

parameter spaces (Turing spaces) for different values of 
d are shown in Figure 4. 

∂u 
,

 

∂x 
= 0,  x ∈ ∂Λ, 

∂v , 
 = 0, x ∈ ∂Λ 

 

...(20) 

Numerical results 

Coral reefs grow due to the deposition of calcium 

carbonate on existing reefs. In equation 13, w represents 

the vertically averaged nondimensionalized depositing 

amount of solid materials on the coral reef. From the 

equation 13 we get: 

∂x 

where / = (0, L). 

This system is solved with MATLAB pdepe (MathWorks, 

2014a) solver under the initial state: 

u(x, 0) = u02 x ∈ Λ, 
,

 

∫ t v(x, 0) = v02 + v02 
 Rand[0, l]

, x ∈ ω
 

w(x, y, t) = klv(x, y, τ )dτ 
O 

v02, x ∈ Λ\ω.  

...(21) 
L L  L 

The density v at time t is proportional to the aggregating Here ω = 
2 

— ,  +
 

L  
.
 

l00 

amount of the solid material at time t. In other words 

the density plot of v gives some information on overall 

aggregating amount w. Consider the one dimensional 

case of the equations 13-14: 

In these simulations the error control options AbsTol and 

RelTol were kept in their default values, RelTol= 10
−3

 

and AbsTol= 10
−6

. 

(c) 

4 5 2 3 

(d) 

1 2 4 6 8 10 
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Figure 5: Density plot of v(x, t) for different values of α and λ Figure 6: Density plot of v(x, t) for different domain sizes 
 

 

 

The density plots of v(x, t) for different values 

of parameters (α and λ), are shown in Figure 5. 

Accordingly the heterogeneity of the space patterns is 

increased as α increases from its critical value by keeping 

λ fixed. 

 

Figure 6 exhibits the density plots of v(x, t) when 

λ = 3.2 and α = 6.48596 for different domain sizes. These 

figures show that the heterogeneity of the spatial patterns 

increases as domain size increases for fixed parameter 

values. 
 

 

Figure 7: Initial state v(x, y, 0) 

Also, the reaction diffusion system is solved numerically 

on 2D domain, Ω ≡ [0, 2] × [0, 2], subject to no-flux 

 

 

 

 
Figure 8: Isosurfaces of numerical solutions of v(x, y, t) for some parameter values. (a) λ = 2.3, α = 5; (b) λ = 2.3, α = 10 
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D 

α = √ 

 
boundary conditions. The considered initial state is as The parameters d, α and λ of the proposed model are kH

2
u

2 
2 

follows: 
defined as d ( 

Dv , α2 = 
u 3Du 

s 
and λ = d + k1H 

3Du 
. Turing 

u(x, y, 0) = u02  (x, y) ∈ Λ, type patterns are possible if these parameters lie in 

v(x, y, 0) = v02 + v02 
Rand[0, l] 

,  (x, y) ∈ ω
 

l00 

the Turing instability region. Considering the case of 

growing corals in a tank, if we assume that the growth 

v02, (x, y) ∈ Λ\ω. 

...(22) 

 

Here ω is the union of the circular region with center 

(1/4, 1), radius 1/25 and the circular region with center 

(7/4, 1), radius 1/25 (Figure 7). 

 

In these numerical simulations the following very 

standard semi-implicit finite difference scheme is used. 

un+l — un un+l + un+l + un+l + un+l — 4un+l 

factors of coral are fixed except the nutrient availability, 
it is reasonable to assume that D , D , H, k and k are 

u v 1 

fixed in this case. Then λ and d are fixed and α depend on 

the nutrient supplying rate us. By adjusting the nutrient 

supplying rate one can adjust α such that all parameters 

lie in the Turing instability region. Then spatial temporal 

patterns of corals can be expected. 

Density plots of the numerical solutions of v 

component on one dimensional space shows some 
 i,j i,j =  i+l,j i—l,j i,j+l i,j—l i,j  + F (un , vn ), branching patterns when the parameters lie near the Hopf 

k 
vn+l — vin,j 

h2 
vi

n
+

+
l,
l
j + vi

n
—

+
l,
l
j + vn

i,
+

j+
l
l + vn

i,
+

j—
l 
l— 4vi

n
,j
+l

 

i,j  i,j 

bifurcation line, 
λ
2  

. Furthermore isosurfaces of the — 
i,j = d + J(un , vn ). λ l 

k h2 i,j i,j numerical solutions of v component on two dimensional 

space also shows some branching structures when 

Here F(u, v) = 1 − u − α
2
uv

2
, G(u, v) = −λv + α

2
uv

2
. 

k is step size of time and h is the step size of x and y 

directions of the domain. The linear system, arisen after 

applying a finite difference technique, is solved using 

the conjugate gradient iterative method. The termination 

of this iterative methods was controlled by applying a 

appropriately chosen parameters, which lie in Turing 

space. These branching structures are somewhat similar 

to the branching structures of some branching corals (e.g. 

Acropora branching corals, Montipora branching corals 

etc.). The heterogeneity of the space patterns vary with 

the values of λ and α as well as the domain size. 

tolerance for the relative error. This tolerance was taken   

as 10
−15

. Isosurfaces of numerically evaluated v(x, y, t) for 

different parameter vales are shown in Figures 8. These 

isosurfaces were obtained by plotting the numerically 

evaluated v(x, y, t) using MATLAB built in functions 

isosurface (MathWorks, 2014b) and isocaps (MathWorks, 

2014c). 

 

CONCLUSION 

 
There are three spatially homogeneous steady states S1, 

S2, S3 for the model. The Turing instability conditions 

are satisfied at S2 for particular parameter values and 

the Turing space for the same (the parameter space at 

which the Turing instability conditions are satisfied) was 

determined. 

 

It was observed that the area of the Turing space 

decreases as d increases from 0 to 1 and it disappears 

when d = 1. In other words the diffusion rate of the 

dissolved solid material should be less than that of 

dissolved nutrient in order for Turing instability to occur. 

There is a critical value dc1 for the diffusion rate d at which 

the Turing space divides into two forms, confined region 

(bounded region) and unconfined region (unbounded 

region), (Figure 3). 
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